If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+91x+85=0
a = 6; b = 91; c = +85;
Δ = b2-4ac
Δ = 912-4·6·85
Δ = 6241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6241}=79$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(91)-79}{2*6}=\frac{-170}{12} =-14+1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(91)+79}{2*6}=\frac{-12}{12} =-1 $
| -10y=-10 | | 8x^2-7x-17=0 | | 9=3x+4x-5 | | 5b^2-6b-104=0 | | 6^(3x-4)-6=30 | | 6x+7+2x=47 | | (x+2)+(7x-9)+(3x)=180 | | 4.1+10m=6.34 | | -4x+2+6x=6 | | 2.3+10m=7.15 | | 5x+1+6x=133 | | 3.8+10m=7.15 | | (q+7)(q–4)=0 | | -6h+20=-h | | -9+1x=0 | | 2n-1=53 | | (2x-5)=3x+10 | | -7-2x=-4x+8 | | 2x–1=3x–6 | | 4x^2+9=144 | | -7-2x=-4x+ | | 4.9+10m=7.52 | | 25=x/5+10 | | 5x/6x=15 | | -4p-3=2p+p | | -5m-8=2m+6 | | 3x^2-8=-84 | | -4x=10=-38 | | -1=9+7x | | 0=9+7x | | -3/2x=-x+1 | | 5+15=-2(6x-10) |